Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.118
Filtrar
1.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656625

RESUMO

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Assuntos
Antibacterianos , Cistite , Infecções por Escherichia coli , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Plasmídeos , Quinolonas , beta-Lactamases , Humanos , Feminino , beta-Lactamases/genética , Plasmídeos/genética , Fezes/microbiologia , Quinolonas/farmacologia , Gravidez , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Adulto , Antibacterianos/farmacologia , Cistite/microbiologia , Farmacorresistência Bacteriana/genética , Prevalência , Infecções Urinárias/microbiologia , Ácido Nalidíxico/farmacologia
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(2): 248-253, 2024 Feb 06.
Artigo em Chinês | MEDLINE | ID: mdl-38387958

RESUMO

By conducting retrospective analysis, this study aim to investigate the resistance mechanism of quinolones in non-typhoidal Salmonella (NTS). A total of 105 strains of NTS isolated from clinical specimens from the Fifth Affiliated Hospital of Southern Medical University from May 2020 to February 2021 were used as research objects. VITEK2 Compact automatic identification drug sensitivity analysis system and serological test were used to identify the strains. The sensitivity of the strains to ciprofloxacin, levofloxacin and nalidixic acid was detected by AGAR dilution method. The whole genome of 105 strains of NTS was sequenced. Abricate and other softwares were used to analyze drug-resistant genes, including plasmid-mediated quinolone resistance gene (PMQR) and Quinolone resistance determination region (QRDR). Serotypes and ST types were analyzed using SISTR and MLST, and phylogenetic trees were constructed. The results showed that the NTS isolated in this region were mainly ST34 Salmonella typhimurium (53.3%). The drug sensitivity results showed that the drug resistance rates of NTS to ciprofloxacin, levofloxacin and nalidixic acid were 30.4%, 1.9% and 22.0%, respectively, and the intermediate rates of ciprofloxacin and levofloxacin were 27.6% and 54.2%.A total of 46 (74.2%) of the 62 quinolone non-susceptible strains carried the PMQR gene, mainly qnrS1 (80.4%), followed by aac(6')-Ib-cr(15.2%); there were 14 NTS and 8 NTS had gyrA and parC gene mutations, respectively. The gyrA was mutations at the amino acid position 87, Asp87Tyr, Asp87Asn, Asp87Gly, and Thr57Ser mutations were detected in parC. In conclusion, this study found that NTS had relatively high resistance to quinolones, carrying qnrS1 gene mainly resulted in decreased sensitivity of NTS to ciprofloxacin and levofloxacin, and gyrA:87 mutation mainly resulted in NTS resistance to Nalidixic acid; Salmonella typhimurium in clinical isolates showed clonal transmission and required further epidemiological surveillance.


Assuntos
Quinolonas , Humanos , Quinolonas/farmacologia , Ácido Nalidíxico/farmacologia , Levofloxacino/farmacologia , Filogenia , Tipagem de Sequências Multilocus , Estudos Retrospectivos , DNA Girase/genética , Salmonella , Ciprofloxacina , Plasmídeos , Mutação , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
3.
PLoS One ; 19(2): e0298635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394140

RESUMO

INTRODUCTION: Multiple studies have shown that typhoid fever is endemic in developing countries characterized by poor hygiene. A unique way of Salmonella Typhi (S.Typhi) pathogenicity is establishing a persistent, usually asymptomatic carrier state in some infected individuals who excrete large numbers of bacteria in faeces. This study aimed to determine the isolation rate of S.Typhi from blood and stool samples among cases and asymptomatic individuals in the Mukuru informal settlement and identify antibiotic resistance patterns within the same population. MATERIALS AND METHODS: We recruited 1014 outpatient participants presenting with typhoid-like symptoms in selected health centres in Nairobi, Kenya. Bacterial isolation was done on Xylose Lysine Deoxycholate agar (XLD) and Mac Conkey agar (Oxoid), followed by standard biochemical tests. Identification was done using API20E, and S.Typhi was confirmed by serotyping using polyvalent antisera 0-9 and monovalent antisera d. The Kirby-Bauer disc diffusion method was used to test the antimicrobial susceptibility of S.Typhi isolates, while Multi-Drug Resistant (MDR) strains were characterized using conventional PCR. RESULTS: Of 1014 participants, 54 (5%) tested positive for S.Typhi. Thirty-eight (70%) of the S.Typhi isolated were from stool samples, while sixteen (30%) were from blood. Three (0.2%) of the isolates were from asymptomatic carriers. Of the 54 S.Typhi isolates, 20 (37%) were MDR. Resistance to ciprofloxacin and nalidixic acid was 43% and 52%, respectively. Resistance to amoxicillin-clavulanic acid (a beta-lactam inhibitor) was 2%. The BlaTEM-1 gene was present in 19/20 (95%) MDR isolates. CONCLUSION: MDR S.Typhi is prevalent in Mukuru Informal settlement. The sharp increase in nalidixic acid resistance is an indication of reduced susceptibility to fluoroquinolones, which are currently the recommended drugs for the treatment of typhoid fever. This study highlights the need for effective antimicrobial stewardship and routine surveillance of antimicrobial resistance (AMR) to inform policy on the prevention and control of MDR Typhoid disease.


Assuntos
Anti-Infecciosos , Febre Tifoide , Humanos , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Nalidíxico/farmacologia , Quênia/epidemiologia , Ágar/farmacologia , Testes de Sensibilidade Microbiana , Salmonella typhi , Anti-Infecciosos/farmacologia , Soros Imunes/farmacologia , Farmacorresistência Bacteriana/genética
4.
BMC Microbiol ; 24(1): 17, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191309

RESUMO

BACKGROUND: Water is considered a source for the transmission of Arcobacter species to both humans and animals. This study was conducted to assess the prevalence, distribution, and pathogenicity of A. butzleri strains, which can potentially pose health risks to humans and animals. Cultures were isolated from surface waters of a mixed-use but predominately agricultural watershed in eastern Ontario, Canada. The detection of antimicrobial resistance (AMR) and virulence-associated genes (VAGs), as well as enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) assays were performed on 913 A. butzleri strains isolated from 11 agricultural sampling sites. RESULTS: All strains were resistant to one or more antimicrobial agents, with a high rate of resistance to clindamycin (99%) and chloramphenicol (77%), followed by azithromycin (48%) and nalidixic acid (49%). However, isolates showed a significantly (p < 0.05) high rate of susceptibility to tetracycline (1%), gentamycin (2%), ciprofloxacin (4%), and erythromycin (5%). Of the eight VAGs tested, ciaB, mviN, tlyA, and pldA were detected at high frequency (> 85%) compared to irgA (25%), hecB (19%), hecA (15%), and cj1349 (12%) genes. Co-occurrence analysis showed A. butzleri strains resistant to clindamycin, chloramphenicol, nalidixic acid, and azithromycin were positive for ciaB, tlyA, mviN and pldA VAGs. ERIC-PCR fingerprint analysis revealed high genetic similarity among strains isolated from three sites, and the genotypes were significantly associated with AMR and VAGs results, which highlight their potential environmental ubiquity and potential as pathogenic. CONCLUSIONS: The study results show that agricultural activities likely contribute to the contamination of A. butzleri in surface water. The findings underscore the importance of farm management practices in controlling the potential spread of A. butzleri and its associated health risks to humans and animals through contaminated water.


Assuntos
Arcobacter , Animais , Humanos , Arcobacter/genética , Canadá , Azitromicina , Clindamicina , Virulência , Ácido Nalidíxico/farmacologia , Cloranfenicol , Enterobacteriaceae
5.
BMC Microbiol ; 24(1): 33, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254012

RESUMO

Vibrio cholerae, as a natural inhabitant of the marine environment is among the world-leading causes of diarrheal diseases. The present study aimed to investigate the genetic relatedness of Iran 2012-2016 V. cholerae outbreaks with 7th pandemic cholera and to further characterize the non-ST69/non-ST75 sequence types strains by whole-genome sequencing (WGS).Twenty V. cholerae isolates related to 2012, 2013, 2015 and 2016 cholera outbreaks were studied by two genotyping methods - Pulsed-field Gel Electrophoresis (PFGE) and Multi-locus Sequence Typing (MLST)-and by antimicrobial susceptibility testing. Seven sequence types (STs) and sixteen pulsotypes were detected. Sequence type 69 was the most abundant ST confirming that most (65%, 13/20) of the studied isolates collected in Iran between 2012 and 2016 belonged to the 7th pandemic clone. All these ST69 isolates (except two) exhibited similar pulsotypes. ST75 was the second most abundant ST. It was identified in 2015 and 2016. ST438, ST178, ST579 and STs of 983 and 984 (as newfound STs) each were only detected in one isolate. All strains collected in 2016 appeared as distinct STs and pulsotypes indicative of probable different originations. All ST69 strains were resistant to nalidixic acid. Moreover, resistance to nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline was only observed in strains of ST69. These properties propose the ST69 as a unique genotype derived from a separate lineage with distinct resistance properties. The circulation of V. cholerae ST69 and its traits in recent years in Iran proposes the 7th pandemic strains as the ongoing causes of cholera outbreaks in this country, although the role of ST75 as the probable upcoming dominant ST should not be ignored.Genomic analysis of non-ST69/non-ST75 strains in this study showed ST579 is the most similar ST type to 7th pandemic sequence types, due to the presence of wild type-El Tor sequences of tcpA and VC-1319, VC-1320, VC-1577, VC-1578 genes (responsible for polymyxin resistance in El Tor biotype), the traits of rstC of RS1 phage in one strain of this ST type and the presence of VPI-1 and VSP-I islands in ST579 and ST178 strains. In silico analysis showed no significant presence of resistance genes/cassettes/plasmids within non-ST69/non-ST75 strains genomes. Overall, these data indicate the higher susceptibility of V. cholerae non-ST69/non-ST75 strains in comparison with more ubiquitous and more circulating ST69 and ST75 strains.In conclusion, the occurrence of small outbreaks and sporadic cholera cases due to V. cholerae ST69 in recent years in Iran shows the 7th pandemic strains as the persistent causes of cholera outbreaks in this country, although the role of ST75 as the second most contributed ST should not be ignored. The occurrence of non-ST69/non-ST75 sequence types with some virulence factors characteristics in border provinces in recent years is noteworthy, and further studies together with surveillance efforts are expected to determine their likely route of transport.


Assuntos
Cólera , Vibrio cholerae , Humanos , Cólera/epidemiologia , Vibrio cholerae/genética , Tipagem de Sequências Multilocus , Irã (Geográfico)/epidemiologia , Ácido Nalidíxico , Pandemias , Surtos de Doenças
6.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38294872

RESUMO

Campylobacter spp. are a leading cause of bacterial foodborne zoonosis worldwide, with poultry meat and products recognised as a significant source of human infection. In Vietnam there are few data regarding the occurrence, antimicrobial resistance, and genomic diversity of Campylobacter in poultry and poultry meat. The aim of this study was to estimate the prevalence of Campylobacter in chicken meat at retail in Hanoi, determine antimicrobial sensitivities of the Campylobacter isolated, and assess their genetic diversity. A total of 120 chicken meat samples were collected from eight traditional retail markets (n=80) and four supermarkets (n=40). Campylobacter was isolated following ISO 10272-1 : 2017 and identification verified by PCR. The prevalence of Campylobacter was 38.3 % (46/120) and C. coli was the most prevalent species in both retail markets (74 %) and supermarkets (88 %). The minimum inhibitory concentrations for ciprofloxacin, erythromycin, gentamicin, nalidixic acid, streptomycin, and tetracycline were determined by broth microdilution for 32 isolates. All characterised Campylobacter were resistant to ciprofloxacin, nalidixic acid, and tetracycline, with corresponding resistance determinants detected in the sequenced genomes. Most C. coli were multidrug resistant (24/28) and two harboured the erythromycin resistance gene ermB on a multiple drug-resistance genomic island, a potential mechanism for dissemination of resistance. The 32 isolates belonged to clonal complexes associated with both poultry and people, such as CC828 for C. coli. These results contribute to the One Health approach for addressing Campylobacter in Vietnam by providing detailed new insights into a main source of human infection and can inform the design of future surveillance approaches.


Assuntos
Campylobacter , Galinhas , Humanos , Animais , Prevalência , Vietnã/epidemiologia , Ácido Nalidíxico , Genômica , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Ciprofloxacina , Eritromicina , Tetraciclina , Campylobacter/genética
7.
J Food Prot ; 87(1): 100192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949412

RESUMO

Antimicrobial resistance (AMR) trends in 114 generic Escherichia coli isolated from channel catfish and related fish species were investigated in this study. Of these, 45 isolates were from commercial-sized channel catfish harvested from fishponds in Alabama, while 69 isolates were from Siluriformes products, accessed from the U.S. Department of Agriculture Food Safety and Inspection Service' (FSIS) National Antimicrobial Resistance Monitoring System (NARMS) program. Antibiotic susceptibility testing and whole genome sequencing were performed using the GenomeTrakr protocol. Upon analysis, the fishpond isolates showed resistance to ampicillin (44%), meropenem (7%) and azithromycin (4%). The FSIS NARMS isolates showed resistance to tetracycline (31.9%), chloramphenicol (20.3%), sulfisoxazole (17.4%), ampicillin (5.8%) and trimethoprim-sulfamethoxazole, nalidixic acid, amoxicillin-clavulanic acid, azithromycin and cefoxitin below 5% each. There was no correlation between genotypic and phenotypic resistance in the fishpond isolates, however, there was in NARMS isolates for folate pathway antagonists: Sulfisoxazole vs. sul1 and sul2 (p = 0.0042 and p < 0.0001, respectively) and trimethoprim-sulfamethoxazole vs. dfrA16 and sul1 (p = 0.0290 and p = 0.013, respectively). Furthermore, correlations were found for tetracyclines: Tetracycline vs. tet(A) and tet(B) (p < 0.0001 each), macrolides: Azithromycin vs. mph(E) and msr(E) (p = 0.0145 each), phenicols: Chloramphenicol vs. mdtM (p < 0.0001), quinolones: Nalidixic acid vs. gyrA_S83L=POINT (p = 0.0004), and ß-lactams: Ampicillin vs. blaTEM-1 (p < 0.0001). Overall, we recorded differences in antimicrobial susceptibility testing profiles, phenotypic-genotypic concordance, and resistance to critically important antimicrobials, which may be a public health concern.


Assuntos
Escherichia coli , Ictaluridae , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Azitromicina/farmacologia , Tetraciclina/farmacologia , Ácido Nalidíxico/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Sulfisoxazol/farmacologia , Testes de Sensibilidade Microbiana , Ampicilina/farmacologia , Cloranfenicol
8.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942558

RESUMO

This study compared the antimicrobial resistance (AMR) of Escherichia coli detected from single samples vs. pooled samples at herd level. The national monitoring dataset included isolates from one sample per pig holding, whereas the research study included isolates from pooled samples of 10 pigs per holding. In both datasets, caecal samples were collected from healthy pigs randomly selected at slaughterhouses and plated on non-selective and antibiotic selective media. Resistance against a panel of nine antibiotics was compared between datasets by generalized linear mixed effects models (GLMMs) and by bootstrapped generalized linear model (GLM) to account for pooling. The highest proportion of resistant E. coli was observed against tetracycline and ampicillin in both datasets. In non-selective media, single and pooled samples showed similar results, but the bootstrapped GLM detected significantly lower resistance to ciprofloxacin and nalidixic acid in the national dataset. In selective media, a significantly greater proportion of resistant isolates was observed in the research dataset for ceftazidime (OR: 0.05, 95%CI = 0.01-0.42) and nalidixic acid (OR: 0.15, 95%CI = 0.05-0.51). The results suggest that one sample per holding provides similar information on AMR at herd level as pooled samples for most of the tested antibiotics, although less resistance to ciprofloxacin, ceftazidime, and nalidixic acid was detected.


Assuntos
Antibacterianos , Escherichia coli , Suínos , Animais , Antibacterianos/farmacologia , Ácido Nalidíxico , Ceftazidima , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Ciprofloxacina , Reino Unido
9.
Environ Sci Technol ; 57(41): 15680-15692, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796760

RESUMO

Interactions between aqueous Fe(II) and solid Fe(III) oxy(hydr)oxide surfaces play determining roles in the fate of organic contaminants in nature. In this study, the adsorption of nalidixic acid (NA), a representative redox-inactive quinolone antibiotic, on synthetic goethite (α-FeOOH) and akaganéite (ß-FeOOH) was examined under varying conditions of pH and cation type and concentration, by means of adsorption experiments, attenuated total reflectance-Fourier transform infrared spectroscopy, surface complexation modeling (SCM), and powder X-ray diffraction. Batch adsorption experiments showed that Fe(II) had marginal effects on NA adsorption onto akaganéite but enhanced NA adsorption on goethite. This enhancement is attributed to the formation of goethite-Fe(II)-NA ternary complexes, without the need for heterogeneous Fe(II)-Fe(III) electron transfer at low Fe(II) loadings (2 Fe/nm2), as confirmed by SCM. However, higher Fe(II) loadings required a goethite-magnetite composite in the SCM to explain Fe(II)-driven recrystallization and its impact on NA binding. The use of a surface ternary complex by SCM was supported further in experiments involving Cu(II), a prevalent environmental metal incapable of transforming Fe(III) oxy(hydr)oxides, which was observed to enhance NA loadings on goethite. However, Cu(II)-NA aqueous complexation and potential Cu(OH)2 precipitates counteracted the formation of ternary surface complexes, leading to decreased NA loadings on akaganéite. These results have direct implications for the fate of organic contaminants, especially those at oxic-anoxic boundaries.


Assuntos
Compostos Férricos , Compostos de Ferro , Compostos Férricos/química , Ácido Nalidíxico , Compostos de Ferro/química , Minerais/química , Óxido Ferroso-Férrico , Adsorção
10.
J Inorg Biochem ; 249: 112366, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734219

RESUMO

Nalidixic acid (NAL) is a broad-spectrum antimicrobial widely used for urinary tract infections. As demonstrated, complexation of NAL with Zn2+, Mn2+ and Cu2+ was often used to get new formulations with an enhanced efficiency and potency. Therefore, the elucidation of behavior of NAL in solution and of its interaction with metal cations are crucial to better understand the influence of complexation on NAL efficiency and to find the optimal conditions to propose novel formulations. As a preliminary study, spectrophotometric titrations were carried out on NAL to determine the values of the protonation constants and to define its acid-base behavior. Then, the interaction with the three metal cations Zn2+, Mn2+ and Cu2+ was investigated by potentiometric and spectrophotometric titrations, varying the conditions of temperature, ionic strength and metal-ligand ratio, thus allowing to get the most robust speciation model and to determine the formation constants with Zn2+, Mn2+, and Cu2+ under different conditions, the sequestering ability of NAL towards metal cations, the formation enthalpic and entropic changes. A simulation under serum conditions was reported to show the relevance of the investigated species. Finally, LD-MS (laser desorption ionization mass spectrometry) and MS/MS analyses highlighted for all systems the formation of the complex species between Zn2+, Mn2+ and Cu2+ with NAL. MS/MS investigations assigned the sites of coordination of the ligand with the metal cation. More precisely, deprotonated NAL coordinates the metal cation via the oxygens of the carboxylate and the carbonyl groups.


Assuntos
Ácido Nalidíxico , Espectrometria de Massas em Tandem , Ligantes , Metais/química , Cátions , Água
11.
Trop Biomed ; 40(2): 183-187, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650405

RESUMO

This study analysed the mechanisms of quinolone resistance among enterotoxigenic Escherichia coli (ETEC) in a periurban area of Lima, Peru. The susceptibility to nalidixic acid and ciprofloxacin, the role of Phe-Arg-b-Naphtylamyde inhibitable-(PAbN) efflux pumps, the presence of mutations in gyrA and parC as well as the presence of aac(6')Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, qnrVC and oqxAB were determined in 31 ETEC from previous case/control studies of children's diarrhoea. Discordances between disk diffusion, with all isolates showing intermediate or fully resistance to nalidixic acid, and minimal inhibitory concentration (MIC), with 7 isolates being below considered resistance breakpoint, were observed. Twenty-one isolates possessed gyrA mutations (19 S83L, 2 S83A). AAC(6') Ib-cr, QnrS, QnrB and QepA were found in 7, 6, 2 and 1 isolates respectively, with 3 isolates presenting 2 transferable mechanisms of quinolone resistance (TMQR) concomitantly. TMQR were more frequent among isolates with MIC to nalidixic acid ranging from 2 to 16 mg/L (p=0.03), while gyrA mutations were more frequent among isolates with nalidixic acid MIC >= 128 mg/L (p=0.0002). In summary, the mechanisms of quinolone resistance present in ETEC isolates in Peru have been described. Differences in the prevalence of underlying mechanisms associated with final MIC levels were observed. The results suggest two different evolutive strategies to survive in the presence of quinolones related to specific bacterial genetic background.


Assuntos
Escherichia coli Enterotoxigênica , Quinolonas , Criança , Humanos , Escherichia coli Enterotoxigênica/genética , Ácido Nalidíxico/farmacologia , Quinolonas/farmacologia , Ciprofloxacina , Estudos de Casos e Controles
12.
Int. microbiol ; 26(3): 475-486, Ene-Agos, 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-223975

RESUMO

The human gut acts as a habitat for diverse microbial communities, including mucin utilizers that play a significant role in host health and diseases. In this study, a gram-positive, rod-shaped mucin degrading bacterium was isolated from human faeces that belonged to the Priestia flexa species. Priestia isolate was analyzed for mucin-degrading ability and found that the KS1 strain could grow on mucin as the sole carbon source. The experimental results of the mucolytic zone around the colony and a 58% decrease in carbohydrate concentration confirmed the ability of Priestia to degrade mucin. The intracellular and extracellular glycosidase assay data supported the above results suggesting the ability of P. flexa to produce glycan hydrolysis enzymes that convert complex mucin oligosaccharide chains into simple glycans. The survival ability of the KS1 strain in simulated gastrointestinal conditions revealed that it could tolerate low pH (≥ 50% cell viability at pH 1.0) and 0.5% bile salt concentration (≥ 85% cell viability). The strain showed low hydrophobicity towards n-hexadecane (26.51 ± 0.92%) and xylene (21.71 ± 0.54%). Moreover, the KS1 culture was resistant to cefixime, clavulanic acid/ceftazidime, nafallin, methicillin, trimethoprim, kanamycin, and nalidixic antibiotic. Our results highlight the isolation of P. flexa KS1 strain that degrade mucin under in vitro conditions and show its better acclimatization within the GI environment. Further studies are required to unearth the molecular mechanisms involved in the degradation of mucin oligosaccharides in the human gut, advancing our understanding of health and disease.(AU)


Assuntos
Humanos , Fezes/microbiologia , Mucinas Gástricas , Gastroenteropatias , Ácido Nalidíxico , Canamicina , Microbiologia , Técnicas Microbiológicas , Bactérias Gram-Positivas
13.
Pak J Biol Sci ; 26(3): 108-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37480267

RESUMO

<b>Background and Objective:</b> The emergence of antibiotic resistance is a primary global health concern. As a result, there is an urgent need for new strategies to combat antibiotic-resistant bacteria. One of these essential strategies is the combination of medicinal plants and antibiotics as an alternative to using antibiotics alone which was the objective of this article. <b>Materials and Methods:</b> Nine plant materials were collected from different Egypt localities and then extracted by water. Water extracts were filtered and added with Mueller-Hinton agar during preparation. Nine test bacteria and 13 standard antibiotics were used in the disc diffusion sensitivity method. <b>Results:</b> The activity of Amikacin was increased when combined with most different plant extracts against <i>Escherichia coli</i> while antagonistic against <i>Pseudomonas aeruginosa</i>. Aztreonam, Ceftriaxone, Gentamicin and Nalidixic acid antibiotics showed antagonistic or indifferent effects when combined with most different plant extracts against <i>E. coli</i>, <i>Klebsiella pneumonia</i> and <i>P. aeruginosa</i>. The synergistic effect was achieved in Aztreonam when combined with all plant extracts, while Nalidixic acid showed antagonistic when combined with most plant extracts against <i>Proteus mirabilis</i>. The antagonistic effect was achieved in Aztreonam, Ceftriaxone and Nalidixic acid when combined with <i>Achillea fragrantissima</i>, <i>Artemisia monosperma</i> and <i>Leptadenia pyrotechnica</i>, also Aztreonam with <i>Lycium shawii</i> extract against <i>Salmonella typhimurium</i>. The <i>A. fragrantissima</i> and <i>A. monosperma</i> increase the activity of Novobiocin and Vancomycin against <i>Bacillus cereus</i> and Ampicillin and Cefazolin against <i>Staphylococcus aureus</i> but Novobiocin activity increased with most plant extracts against <i>S. aureus</i>. <b>Conclusion:</b> The combinations of antibiotics with the extracts of medicinal plants displayed varying degrees of effects, synergistic, antagonistic and indifferent according to antibiotic type, plant extract and test organism.


Assuntos
Antibacterianos , Plantas Medicinais , Antibacterianos/farmacologia , Aztreonam , Ceftriaxona , Ácido Nalidíxico , Novobiocina , Escherichia coli , Staphylococcus aureus , Extratos Vegetais/farmacologia , Bacillus cereus
14.
Comp Immunol Microbiol Infect Dis ; 98: 102005, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37352625

RESUMO

Even though there is a link between antibiotic resistance and the presence of transposable elements few research has looked at the prevalence and distribution of transposable elements/ integrons in piggery farm samples. Present study identified the presence of six transposable elements namely Tn6763 (Accession number: OQ565300), Tn6764, (Accession number: OQ565299), Tn6765 (Accession number: OQ409902), Tn2003 (Accession number: OQ503494), Tn6072 (Accession number: OQ565298) and Tn6020 (Accession number: OQ503493) in piggery farm waste from India which are belongs to Enterobacteriaceae family. In a conjugative experiment, Klebsiella isolates carrying Tn6020 having the resistant phenotypes for nalidixic acid was used as donor cells while Escherichia coli DH5α Cells carrying chloramphenicol resistant plasmid was employed as recipient cells. Transconjugant bacterial colonies were shown to carry the Tn6020 transposable elements with both nalidixic acid (donor cell origin) and chloramphenicol (recipient cell origin) resistant antibiotic phenotypes. Given the presence of transposable elements in 21.4% of resistant Enterobacteriaceae strains, preventative measures are vital for avoiding the spread of mobile genetic resistance determinants in the piggery sector and to monitor their emergence.


Assuntos
Antibacterianos , Elementos de DNA Transponíveis , Animais , Antibacterianos/farmacologia , Cloranfenicol , Conjugação Genética , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Fazendas , Integrons/genética , Testes de Sensibilidade Microbiana/veterinária , Ácido Nalidíxico , Fenótipo , Plasmídeos/genética , Suínos
15.
Microbiol Spectr ; 11(3): e0414022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125926

RESUMO

Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007-2010 and 2015-2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015-2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007-2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007-2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015-2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future.


Assuntos
Cólera , Epidemias , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Cólera/epidemiologia , Cólera/microbiologia , Antibacterianos/farmacologia , Quênia/epidemiologia , Ácido Nalidíxico , Surtos de Doenças
16.
Artigo em Inglês | MEDLINE | ID: mdl-37188434

RESUMO

The emergence of new compounds during the past decade requires a high-throughput screening method for toxicity assay. The stress-responsive whole-cell biosensor is a powerful tool to evaluate direct or indirect damages of biological macromolecules induced by toxic chemicals. In this proof-of-concept study, nine well-characterized stress-responsive promoters were first selected to assemble a set of blue indigoidine-based biosensors. The PuspA-based, PfabA-based, and PgrpE-based biosensors were eliminated due to their high background. A dose-dependent increase of visible blue signal was observed in PrecA-, PkatG-, and PuvrA-based biosensors, responsive to potent mutagens, including mitomycin and nalidixic acid, but not to genotoxic lead and cadmium. The PrecA, PkatG, and Ppgi gene promoters were further fused to a purple deoxyviolacein synthetic enzyme cluster. Although high basal production of deoxyviolacein is unavoidable, an enhanced visible purple signal in response to mitomycin and nalidixic acid was observed as dose-dependent, especially in PkatG-based biosensors. The study shows that a set of stress-responsive biosensors employing visible pigment as a reporter is pre-validating in detecting extensive DNA damage and intense oxidative stress. Unlike widely-used fluorescent and bioluminescent biosensors, the visual pigment-based biosensor can become a novel, low-cost, mini-equipment, and high-throughput colorimetric device for the toxicity assessment of chemicals. However, combining multiple improvements can further improve the biosensing performance in future studies.


Assuntos
Técnicas Biossensoriais , Ácido Nalidíxico , Estudo de Prova de Conceito , Ácido Nalidíxico/toxicidade , Bactérias/genética , Mitomicina/toxicidade , Técnicas Biossensoriais/métodos , Dano ao DNA , Estresse Oxidativo
17.
Chemosphere ; 334: 138952, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37201608

RESUMO

Mechanism of direct UV photolysis of nalidixic acid (NA), a model quinolone antibiotic, was revealed using a combination of steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. Both quantum yields of photodegradation and detailed identification of final products were performed for the first time for two main forms of NA: neutral and anionic. The quantum yield of NA photodegradation is 0.024 and 0.0032 for the neutral and anionic forms in the presence of dissolved oxygen and 0.016/0.0032 in deoxygenated solutions, respectively. The main process is photoionization with the formation of a cation radical, which undergoes transformation into three different neutral radicals and further into final photoproducts. It is shown that the triplet state does not play a role in the photolysis of this compound. The main products of photolysis are the products of the loss of carboxyl, methyl and ethyl groups in the NA molecule, as well as the dehydrogenation of the ethyl group. The results obtained may be important for understanding the fate of pyridine herbicides in the processes of disinfection by UV and in natural waters under the action of sunlight.


Assuntos
Ácido Nalidíxico , Poluentes Químicos da Água , Fotólise , Cinética , Luz Solar , Água/química , Poluentes Químicos da Água/análise
18.
Braz J Microbiol ; 54(2): 803-815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36905487

RESUMO

Humans frequently contract urinary tract infections (UTIs), which can be brought on by uropathogens (UPs) that are multi-drug resistant. Treatment for UTIs brought on by pathogenic UPs that produce extended-spectrum lactamases (ESBLs) is more costly and potentially fatal. As a result, the objective of this study was to use culture, biochemical, and 16S rRNA sequencing to identify and characterize UPs isolated from outpatients in Noakhali, Bangladesh, who had symptoms of UTIs. ESBL gene identification and quinolone resistance gene typing were then performed on the isolates using polymerase chain reaction (PCR). Throughout the trial's 8-month duration, 152 (76%) of 200 urine samples were positive for the presence of UPs. The overall number of UPs recovered was 210, with 39 individuals having multiple UPs present in their samples. Among all of the isolates, Escherichia coli (45.24%, 95/210; 95% confidence interval (CI): 35.15-57.60%), Enterobacter spp. (24.76%, 52/210; CI: 19.15-35.77%), Klebsiella spp. (20.95%; 44/210; CI: 15.15-30.20%), and Providencia spp. (9.05%; 19/210; CI: 4.95-19.25%) were the four most prevalent bacteria found in the isolates. The UPs displayed a very high level of resistance to piperacillin 96.92% (126/130), ampicillin 90% (117/130), nalidixic acid 77.69% (101/130), cefazolin 70% (91/130), amoxicillin 50% (55/130), cefazolin 42.31% (55/130), nitrofurantoin 43.08% (56/130), and ciprofloxacin 33.08% (43/130), whereas resistance to netilmicin (3.85%), amikacin (4.62%), and imipenem (9.23%) was low. Individually, every species of E. coli and Providencia spp. showed greater ampicillin, amikacin, cefazolin, cefazolin, and nalidixic acid resistance than the others. The bivariate results indicate several antibiotic pairings, and isolates had meaningful associations. All MDR isolates were subjected to PCR, which revealed that blaCTX-M-15 genes predominated among the isolates, followed by the blaTEM class (37%). Isolates also had the qnrS, aac-6´-Ib-cr, and gyrA genes. The findings provide worrying indications of a major expansion of MDR isolates in the study locations, particularly the epidemiological balCTX-M 15, with the potential for the transmission of multi-drug-resistant UP strains in the population.


Assuntos
Infecções por Escherichia coli , Quinolonas , Infecções Urinárias , Humanos , Escherichia coli , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Quinolonas/farmacologia , Cefazolina , Amicacina , Ácido Nalidíxico , Bangladesh/epidemiologia , RNA Ribossômico 16S/genética , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética , Farmacorresistência Bacteriana , Infecções Urinárias/microbiologia , Ampicilina , Testes de Sensibilidade Microbiana
19.
Artigo em Inglês | MEDLINE | ID: mdl-36981998

RESUMO

Plant growth and the development of morphological traits in plants are inhibited under exposure to pharmaceuticals that are present in soil and water. The present study revealed that moxifloxacin (MOXI), nalidixic acid (NAL), levofloxacin (LVF) and pefloxacin (PEF) at concentrations of >0.29, >0.48, >0.62 and >1.45 mg × L-1, respectively, inhibited the growth (Ir) of duckweed plants and decreased their yield (Iy). In the current study, none of the tested quinolones (QNs) at any of the examined concentrations were lethal for common duckweed plants. However, at the highest concentration (12.8 mg × L-1), LVF increased Ir and Iy values by 82% on average and increased the values of NAL, PEF and MOXI by 62% on average. All tested QNs led to the loss of assimilation pigments. In consequence, all QNs, except for LVF, induced changes in chlorophyll fluorescence (Fv/Fm), without any effect on phaeophytinization quotient (PQ) values. The uptake of NAL, MOXI, LVF by Lemna minor during the 7-day chronic toxicity test was directly proportional to drug concentrations in the growth medium. Nalidixic acid was absorbed in the largest quantities, whereas in the group of fluoroquinolones (FQNs), MOXI, LVF and PEF were less effectively absorbed by common duckweed. This study demonstrated that biosorption by L. minor occurs regardless of the plants' condition. These findings indicate that L. minor can be used as an effective biological method to remove QNs from wastewater and water and that biosorption should be a mandatory process in conventional water and wastewater treatment.


Assuntos
Araceae , Quinolonas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Biomarcadores Ambientais , Quinolonas/toxicidade , Ácido Nalidíxico/farmacologia , Plantas , Água
20.
Biomed Res Int ; 2023: 1872655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760473

RESUMO

The white button mushroom (Agaricus) is a significant nutritional and therapeutic species utilized in the human diet and could transmit various bacterial infections. Campylobacter species are the most common cause of foodborne illness across the world. The present study has been planned to determine the frequency of virulence genes and antibiotic susceptibility test in Campylobacter spp. recovered from Agaricus mushroom. In this study, 740 Agaricus mushroom samples were gathered randomly from various markets from June 2020 to December 2020. Confirmation of Campylobacter spp. using biochemical analyses and 23S rRNA-based PCR was performed. The agar dilution technique was used to determine resistance to antibiotics using gentamicin (GM10µg), ciprofloxacin (CIP5µg), nalidixic acid (NA30µg), tetracycline (TE30µg), ampicillin (AM10µg), amoxicillin+ clavulanic acid (AMC30µg), erythromycine (E15µg), azithromycin (AZM15µg), clindamycin (CC2µg), and chloramphenicol (C30µg). Multiplex PCR was utilized to determine the prevalence of the recR, dnaJ, wlaN, virBll, cdtC, cdtB, cdtA, flaA, cadF, pidA, ciaB, ceuE, and cgtB genes. Campylobacter spp. were detected in 74 out of 740 Agaricus mushroom samples (10%). According to the data, Agaricus mushroom samples included 32 (4.32%) C. jejuni, 11 (1.48%) C. coli, and 31 (4.18%) other Campylobacter spp. Antimicrobial resistance was most common in C. jejuni isolates. C. jejuni isolates also had the lowest resistance rate to gentamycin, ciprofloxacin, and nalidixic acid. C. coli isolates were reported to have the highest antimicrobial resistance to ciprofloxacin, ampicillin, and erythromycine. Resistance to gentamycin and amoxicillin+ clavulanic acid was likewise lowest among C. coli strains. The flaA and ciaB genes were found in 100% of B-lactams-susceptible C. jejuni and C. coli strains. When examining the relationship between antibiotic resistance and the existence of virulence genes, it was observed that there is a statistically significant relationship (p < 0.001) between bacterial resistance and virulence genes. Our findings indicated that changes in resistance patterns in Campylobacter strains have emerged from multiple treatment approaches in Agaricus mushrooms.


Assuntos
Agaricus , Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Humanos , Virulência/genética , Ácido Nalidíxico , Irã (Geográfico) , Campylobacter/genética , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Ciprofloxacina , Eritromicina , Gentamicinas , Ampicilina , Ácido Clavulânico , Amoxicilina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...